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Magnetic mirroring and cosmic ray pitch-angle diffusion
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Both quasilinear and nonlinear theories of cosmic ray scattering in fluctuating electric and magnetic fields
are usually based ofrenormalizedl first-order perturbation theories, resulting in scattering parameters that
depend functionally only on the variance and two-point correlation functions of the random fields. | show that
these theories must fail to predict scattering of particles with pitch angles close to 90° since mirroring effects
are not determined by these statistical quantities. This is shown by a comparison of Monte Carlo simulations
in fields with the same covariance functions, but differing in the variability of the absolute value of the total
magnetic field. Additionally, | report some numerical evidence that mirroring can be nondiffusive in some
cases[S1063-651X%98)14109-0

PACS numbgps): 52.20.Dq, 52.25.Fi, 95.30.Qd

I. INTRODUCTION tions depending only on covariance functiofg,(x,x’)
=(6B,(x) 5B,(x")) of the fluctuating fields. This is demon-

It is well known that cosmic rays are scattered efficientlystrated by a comparison of particle propagation in three dif-
by the partially random electric and magnetic fields in theferent types of random fields with the same covariance func-
interplanetary and interstellar medium. Due to the comparation, two of them with varyingB| and one wheré¢B| is a
tively small electric components of these fields, the fastesgonstant in space. Pitch-angle diffusion closg:te 0 is con-
process is pitch-angle scattering, frequently described as giderably reduced in the latter case.
diffusive process in the quantity =cosp, where the pitch Therefore, the covariance functions or, equivalently, cor-
angle ¢ is the angle between the magnetic field and therelation functions or power spectra provide only insufficient
particle’s momentum vector. An important but still uncom- information about pitch-angle scattering. Additionally, | re-
pleted task is to derive the cosmic ray transport parametersort some evidence for nondiffusive behavior in cases in
from the statistical properties of the random component ofvhich mirroring occurs.
the fields. Usually, this is done perturbatively, decomposing
the magnetic field into an orderéed.g., homogeneousom-
ponentB, and a fluctuating paréB.

The simplest approach is quasilinear the¢®LT) [1], In order to determine the pitch-angle diffusion coefficient
which describes pitch-angle diffusion as scattering by flucD , () by means of Monte Carlo simulations, | follow
tuations in resonance with the helical motion the particleslosely the approach of Kaiser, Birmingham, and Jones
would follow in the ordered field. However, as noted by (KBJ) [11]. An ensemble of random fields, varying only in
Wibberenzet al. [2], at least if one assumes a very simplethe z direction, is generated on a grid and the propagation of
geometry foréB, the QLT predicts a considerably smaller a number of particles is followed numerically by integration
mean free path for cosmic rays than is observed in the intetsf the equations of motion. The particles are released at a
planetary medium. Many attempt3—6] have been made in starting valugu(t=0)= ug and “absorbed” as soon as they
order to resolve this discrepancy, most of them emphasizingeach a right or left boundary valye, or ug with u, <pug
effects that are important in the regipi=0 where the QLT < ug. If the propagation of an ensemble of particles is prop-
is inconsistent at least for static or slowly varying fields.  erly described by a Fokker-Planck equation, the evolution of

In particular, some authors introduced nonlinear modifi-the space- and gyrophase-averaged distribution function

cations to the QLT taking magnetic mirroring into accountf(u,t) should be governed by the diffusion equation
[7-9]. A common feature of these theories and QLT is the

prediction that parameters such as the pitch-angle diffusion 9 9

coefficient depends on the covariance functions ﬁf(’“’t)z &—( Dwﬂ—f(,u,t)), @)
(6Bi(x)6Bj(x")) only, where the angular brackets denote K K
the ensemble average of the quantity enclosed.

Goldstein [10] questioned the validity of these ap-
proaches: Mirroring results from fluctuations in the field
modulus|B| and adiabatic invariance of the magnetic mo- f(n,00=No(n—pus), 2
ment. However, the fluctuations 8| observed in the solar
wind are much smaller than the values used in nonlineawhere N is the number of particles released. The time-
theories and Monte Carlo simulations. integrated distribution functioR (u) = 4 f(u,t) dtis finite,

In this work | show that these mirroring effects cannot beat least if the motion is really diffusive, since then all par-
adequately described by either quasilinear or nonlinear thedicles will have been absorbed sooner or later at the bound-
ries (including the ones cited abojewhich result in equa- aries. Time integrating Eq1), one obtains

II. NUMERICAL SIMULATIONS

with the initial condition

1063-651X/98/563)/40334)/$15.00 PRE 58 4033 © 1998 The American Physical Society



4034 BRIEF REPORTS PRE 58

d dF(u) functions unchanged, but no{B| is no longer a constant
@( o T) =—No(p—pus) 3 such thafas in case&C) mirroring effects should be expected.
The angle¥ between the mean field compondy and the
and hence z axis was allowed to vary in thg-z plane. ¥ =0 corre-
sponds to the standard slab model. For the ¢lse0, 6B,
N =const, u<us was set to zero such thaB-By=0 and fluctuations of the

dF(w)
—Ng=const, u>us. @ total field modulus were only of second orderaB.

ke dp

The constantdN, and Ng can be shown to be equal to the
total number of particles absorbed at the left and the right lll. RESULTS
boundary, respectively. From this equati@n,,, can be de-

termined by measuring, e.glF/du andN_ for an ensemble ) ) ) . ]
of realizations. For a comparison with classical results, some simulations

KBJ generated random field$8 with vanishingy andz ~ Were performed using KBJ's method to generate the fields on
components and an exponentially decaying correlation funche grid. The results were in agreement with those published
tion A,,(z—2'):=(5B,(z) 6B,(z')) characterized by a cor- by KBJ.

A. Nondiffusive behavior

relation lengthz,, However, for the study of the diffusive process it is useful
to deviate slightly from this reference by defining the pitch
Ay(z—2")=(5BYexp —|z—2'|/z,), (5y angle as the angle between the momentum andlabal

magnetic fieldB(x) instead of the mean fiel,. The reason

by simulating the following Gaussian Markov process on ais that we are mainly interested in the scattering through
grid. First, 6B,(0) is drawn from a Gaussian distribution pitch angles of 90°: Anot too energeticparticle will move
with mean zero and variancésBZ). Then, knowing only a small fraction of one correlation length of the random
6B,(nh) at the grid pointn, where h is the grid size, field and therefore have no chance to perform any kind of
SB,[ (n+1)h] at the next grid point is drawn from a Gauss- averaging oveB. To lowest order, it performs a gyration
ian distribution with mea®B,(nh)exp(—|h|/z) and variance around the local, not the mean, magnetic field. It is easy to
5B?[1—exp(—2|h//z)] iteratively. see that this gyration in the local field corresponds to an

In order to simulate fields with exponentially decaying oscillation of the pitch angle cosine with an amplitude of
covariance functions that conserve the quantBy+ 6B|  orderB/B if one uses the standard definition. This behav-
one needs two nonvanishing components. In contrast t®r cannot be described by a diffusive process and, as the
KBJ's method, we construct fluctuating fields wifl8|  time-integrated distribution function cannot distinguish
=const using the following algorithm. Introduce a phasewhether a particle is changing its pitch angle due to diffusion
angle ¢ on a spatial grid along the axis with grid sizeh  or this oscillation, it leads to undesired artificial contributions
(draw ¢, from a uniform random distribution from the in- to the pitch-angle diffusion coefficient in our numerical
terval[0,2m)) and computep;_.; on the grid poini+1 from  method. Moreover, our local definition is closer to the fre-
the value on pointi by ¢;.;=¢;+A¢d;, where A¢g, is  quently used concept of diffusion along a field line. Though
drawn from a normal distribution with zero mean and vari-the Fokker-Planck equation has originally been derived by
ancey2h/z,. If one now set8,=B,e,, wheree, is the unit QLT for the standard definition, | will therefore assufaad

vector in thez direction and tes) its validity for the locally defined pitch-angle. Both
definitions coincide forsB— 0. Note, however, that the re-
6B, (z)= 6Bcog ¢(2)], sults reported in this paper were changed only marginally if
one used the standard definition and the local one was cho-
oB(2)= 6Bsin ¢(2)], (6) sen only to eliminate the oscillatory component. A more de-

tailed comparison shall be presented elsewhere. Figure 1
and 6B,(z) =0, one obtains for théensemble-averaggdo-  shows the time-integrated distribution functidh(u) for
variance functions casesA and C, where §B/By=0.1, Qz/v=1 and¥ =0,

) and caseéA was calculated using both the local and the stan-
A(z—2')=Ay(z—2')= 6B exr{ 3 |Z_Zc|) (77  dard definition of the pitch angle. It can be seen that it is
XX vy 2 Z. considerably more difficult for the particles to obtain nega-
tive pitch angles in cas&, where mirroring effects are mini-
and A,y(z—2")=0 on the grid. The fields at points not on mal, than in case C with fields generated by KBJ's method.
the grid are determined via linear interpolation¢f These  Due to the oscillatory artifacts, the transition region around
fields fulfill |B|= \/BOZ+ SB?=const andvV-B=0. Note that u=0 is smeared out over an interval about
the process defined by E) is not Gaussian sincéB, and [ — 6B/Bg,8B/B] if one uses the standard definition of the

6B, are bounded. pitch angle.
The fields investigated in this paper are constructed with As noted above, QLT is inconsistent in the vicinity of
either this algorithmcaseA), or KBJ's algorithm(caseC). =0: On the one hand, it is assumed that the fields “seen” by

In order to investigate the importance of fluctuations of thethe particles are uncorrelated; on the other hand, the particles
field modulus, | also performed calculations with the algo-perform to lowest order a periodic and localized motion giv-
rithm of caseA, but drawingsB, and 6B, from independent ing rise to highly correlated fields. Therefore, though it is
realizations(caseB). This leaves the two-point correlation well known that there may be stochastic and diffusive mo-
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FIG. 1. Time-integrated distribution functidf(u) for caseA FIG. 3. Dependence @, in the numerical experiments qn

(nonmirroring and case€ (mirroring), using the standard definition for propagation in the fields described in Fig. 2. MC, results of
of the pitch angle. Also showtfull line) is caseA with a locally  Monte Carlo simulations; QLT, prediction of the quasilinear theory.
defined pitch angle, free from the artificial contributions of oscilla- The region wheré’ (1) <0, i.e., whereD ,,, would be negative, is
tions in the local field close tqu=0 and, therefore, showing a excluded.

sharper transition in this region.

o o an ensemble with5B/By=0.1, Qyz./v=4, and ¥=0.6,

tion in deterministic fields(e.g., see[12]), one may ask \\here(),=eB,/mcis the gyrofrequency in the mean field.
wheth_er scattering through=0 can be properly described According to Eq.(4), F(x) should be a monotonically in-

as a diffusive process. The answer, of course, depends on tla?easing function fop.< us. However, it is decreasing in a
detailed formulation of the question, as it is clear that theregion close tou=0, which would indicate a negative dif-
short time behavior of the distribution is deterministic ands cion coefficientd ' if the process were really diffusive
the Fokke.r-PIanck equation cannot resolve.the time evoluag this is clearly unphysical, the description by the Fokker-
tion over intervals smaller than the relaxation time of thePIanck equation seems to be an inadequate approximation in
particles. | present a case where the diffusion equatign this region. The shape d%(x) at u~0 remained almost
leads to an inconsistent interpretation of the time-integrategfnch(,jmged when the initial valyes was moved fromus

d|s§_r;]but|pn flurtl.cnon.. tandard slab trv of the field =0.7 to ug=0.4. Therefore, it is not likely that the reason
€ simulations In a standard siab geometry ot the 1ieldg,, 1ne jnyersion is an incomplete relaxation of the initial

showed some evidence for a slight asymmetry of , distribution
around =0 that might indicate nondiffusive behavior in For Iargér values ofx|, however, the QLT prediction

this region. This becomes very prominent if the mean field i%Nas in reasonably good agreement with the outcome of the

not parallel, but inclined with an angl® with respect to the Monte Carlo simulationgFig. 3. For the rest of the paper |
z axis (i.e., in an oblique slab model; in order to minimize will focus on the standard slab model wih=0
mirroring | chose a random field with only one nonvanishing '

field component fulfillingéBL By): Fig. 2 showsF(u) for B. Mirroring and diffusion

According to QLT and its nonlinear modificatiors,,,, is

1400
a functional of the covariance functions,(x), where
1200 | E m,ne {X,y,z}. | now compare the propagation in fields con-
structed according to E@6) (caseA) with fields that do not
1000 | conservgB|, but have the same covariance structure. These
o 00l | can be generated with the same method, but taBBgand
% 8B, from two independent realizatiorisaseB).
E 600 - . For the slab-model discussed here, whéBevaries only
in the direction of the mean field.e., ¢=0), the functional
400 1 ] dependence oD ,, can be reduced to a dependence on the
a0 | | covariance function of the two circular polarization compo-
nents Agrg(z) and A (z), where 6B g:=(6By
008 iiéBy)/\/z. For case®A andB as well as the fields simu-

1 lated by KBJ, however, these are equAkg(z)=A,,(2)
H = 6B2exp(—|Z/z)/2. Therefore a simulation in fields accord-

FIG. 2. Time-integrated distribution functidf(x) from Monte  ind to KBJ is also included in the comparisceaseC).
Carlo simulations for propagation in fields decribed by an oblique Figure 4 shows exemplarily the results of simulations
slab model with anglel =0.6Q0z./v=4, andsB/B,=0.1.F av-  With 6B/By=0.1 and()yz./v=1. Close tou=0 the results
eraged over an ensemble Rf=8000 realizations witiN=10 par- Of casesB and C are not equal, but of the same order of
ticles. magnitude. Casé, however, wherdB| is a constant and
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0.1

IV. CONCLUSIONS

| have shown that knowledge of the covariance functions
or two-point correlation functions or, equivalently, of the
power spectra of the random magnetic fields is, unlike as-
sumed in most studies based on quasilinear theory and its
nonlinear extensions, not sufficient to predict the transport
properties of cosmic rays. This was demonstrated by simu-
lating the propagation in random fields with identical cova-
riance functions but differing in the variability of the total
field modulus. As the latter quantity determines the relative
importance of mirroring, the resulting pitch angle diffusion
coefficient at pitch-angles about 90° could vary by orders of
-1 08 06 04 02 0 02 04 06 08 1 magnitude without changing the correlation functions.

Though there is evidence for nondiffusive behavior in
some cases, a reinterpretation of the distribution functions in
terms of modified theories based on, e.g., a more general
master equation instead of the Fokker-Planck equation would

cording to Eq.(6); caseB, fields with nonconstar{B| with x andy not_help as Ion_g as they use iny information a_bout_ the co-
components drawn from different realizations. KBJ, fields gener-Yarance functionsAi, . This is demonstrated in Fig. 1,

ated by the process described by KBJ; QLT, prediction of the quaShOWing the time-integrated distribution functioRé.) for
silinear theory. propagation in mirroring and nonmirroring fields: Obviously,

the total number of particles witp <0 is considerably re-
. S . . duced in the latter case where scattering throughO is
scattering by magnetic mirroring should be minimal, yields ag4r1y hampered. If the dynamics would be specified com-
pitch-angle diffusion coefficient that is consideraltgbout  petely by the covariance functions, both distributions would

two orders of magnitudgsmaller tharD,, in caseC. be identical or, if one takes a finite relaxation time into ac-
Results of simulations with different parameter Setscount, very similar.

showed that this effect is less pronounced for particles with
higher rigidity (i.e., if Q4z./v<1) and more pronounced for
particles with lower rigidity. This should be expected since
only for sufficiently low velocities the fluctuations “seen” A large part of this work was done during my time at the
by the particles can be regarded as slowly varying such tha#ax-Planck-Institut fu Radioastronomie in Bonn. It is a
the magnetic moment is an adiabatic invariant and mirroringpleasure to thank Professor Reinhard Schlickeiser for his
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FIG. 4. Dependence @, on u for propagation in fields with
exponentially decaying correlation function, slab model with
Qz./v=1, and 6B/By,=0.1. CaseA, fields with constan{B| ac-
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