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Magnetic mirroring and cosmic ray pitch-angle diffusion

Uwe Jaekel
Research Center Ju¨lich, Institute of Chemistry and Dynamics of the Geosphere, ICG-4, D-52425 Ju¨lich, Germany

~Received 29 December 1997!

Both quasilinear and nonlinear theories of cosmic ray scattering in fluctuating electric and magnetic fields
are usually based on~renormalized! first-order perturbation theories, resulting in scattering parameters that
depend functionally only on the variance and two-point correlation functions of the random fields. I show that
these theories must fail to predict scattering of particles with pitch angles close to 90° since mirroring effects
are not determined by these statistical quantities. This is shown by a comparison of Monte Carlo simulations
in fields with the same covariance functions, but differing in the variability of the absolute value of the total
magnetic field. Additionally, I report some numerical evidence that mirroring can be nondiffusive in some
cases.@S1063-651X~98!14109-0#

PACS number~s!: 52.20.Dq, 52.25.Fi, 95.30.Qd
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I. INTRODUCTION

It is well known that cosmic rays are scattered efficien
by the partially random electric and magnetic fields in t
interplanetary and interstellar medium. Due to the compa
tively small electric components of these fields, the fas
process is pitch-angle scattering, frequently described a
diffusive process in the quantitym5cosf, where the pitch
angle f is the angle between the magnetic field and
particle’s momentum vector. An important but still uncom
pleted task is to derive the cosmic ray transport parame
from the statistical properties of the random component
the fields. Usually, this is done perturbatively, decompos
the magnetic field into an ordered~e.g., homogeneous! com-
ponentB0 and a fluctuating partdB.

The simplest approach is quasilinear theory~QLT! @1#,
which describes pitch-angle diffusion as scattering by fl
tuations in resonance with the helical motion the partic
would follow in the ordered field. However, as noted
Wibberenzet al. @2#, at least if one assumes a very simp
geometry fordB, the QLT predicts a considerably small
mean free path for cosmic rays than is observed in the in
planetary medium. Many attempts@3–6# have been made in
order to resolve this discrepancy, most of them emphasiz
effects that are important in the regionm'0 where the QLT
is inconsistent at least for static or slowly varying fields.

In particular, some authors introduced nonlinear mod
cations to the QLT taking magnetic mirroring into accou
@7–9#. A common feature of these theories and QLT is t
prediction that parameters such as the pitch-angle diffus
coefficient depends on the covariance functio
^dBi(x)dBj (x8)& only, where the angular brackets deno
the ensemble average of the quantity enclosed.

Goldstein @10# questioned the validity of these ap
proaches: Mirroring results from fluctuations in the fie
modulus uBu and adiabatic invariance of the magnetic m
ment. However, the fluctuations ofuBu observed in the sola
wind are much smaller than the values used in nonlin
theories and Monte Carlo simulations.

In this work I show that these mirroring effects cannot
adequately described by either quasilinear or nonlinear th
ries ~including the ones cited above!, which result in equa-
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tions depending only on covariance functionsD lm(x,x8)
5^dBl(x)dBm(x8)& of the fluctuating fields. This is demon
strated by a comparison of particle propagation in three
ferent types of random fields with the same covariance fu
tion, two of them with varyinguBu and one whereuBu is a
constant in space. Pitch-angle diffusion close tom50 is con-
siderably reduced in the latter case.

Therefore, the covariance functions or, equivalently, c
relation functions or power spectra provide only insufficie
information about pitch-angle scattering. Additionally, I r
port some evidence for nondiffusive behavior in cases
which mirroring occurs.

II. NUMERICAL SIMULATIONS

In order to determine the pitch-angle diffusion coefficie
Dmm(m) by means of Monte Carlo simulations, I follow
closely the approach of Kaiser, Birmingham, and Jon
~KBJ! @11#. An ensemble of random fields, varying only
thez direction, is generated on a grid and the propagation
a number of particles is followed numerically by integratio
of the equations of motion. The particles are released
starting valuem(t50)5mS and ‘‘absorbed’’ as soon as the
reach a right or left boundary valuemL or mR with mL,mS
,mR . If the propagation of an ensemble of particles is pro
erly described by a Fokker-Planck equation, the evolution
the space- and gyrophase-averaged distribution func
f (m,t) should be governed by the diffusion equation

]

]t
f ~m,t !5

]

]mS Dmm

]

]m
f ~m,t ! D , ~1!

with the initial condition

f ~m,0!5Nd~m2mS!, ~2!

where N is the number of particles released. The tim
integrated distribution functionF(m)5*0

` f (m,t) dt is finite,
at least if the motion is really diffusive, since then all pa
ticles will have been absorbed sooner or later at the bou
aries. Time integrating Eq.~1!, one obtains
4033 © 1998 The American Physical Society
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d

dmS Dmm

dF~m!

dm D52Nd~m2mS! ~3!

and hence

Dmm

dF~m!

dm
5H NL[const, m,mS

2NR[const, m.mS .
~4!

The constantsNL and NR can be shown to be equal to th
total number of particles absorbed at the left and the ri
boundary, respectively. From this equation,Dmm can be de-
termined by measuring, e.g.,dF/dm andNL for an ensemble
of realizations.

KBJ generated random fieldsdB with vanishingy andz
components and an exponentially decaying correlation fu
tion Dxx(z2z8):5^dBx(z)dBx(z8)& characterized by a cor
relation lengthzc ,

Dxx~z2z8!5^dB2&exp~2uz2z8u/zc!, ~5!

by simulating the following Gaussian Markov process on
grid. First, dBx(0) is drawn from a Gaussian distributio
with mean zero and variancêdBx

2&. Then, knowing
dBx(nh) at the grid pointn, where h is the grid size,
dBx@(n11)h# at the next grid point is drawn from a Gaus
ian distribution with meandBx(nh)exp(2uhu/zc) and variance
dB2@12exp(22uhu/zc)# iteratively.

In order to simulate fields with exponentially decayin
covariance functions that conserve the quantityuB01dBu
one needs two nonvanishing components. In contras
KBJ’s method, we construct fluctuating fields withuBu
[const using the following algorithm. Introduce a pha
anglef on a spatial grid along thez axis with grid sizeh
„draw f0 from a uniform random distribution from the in
terval @0,2p!… and computef i 11 on the grid pointi 11 from
the value on pointi by f i 115f i1Df i , where Df i is
drawn from a normal distribution with zero mean and va
anceA2h/zc. If one now setsB05B0ez , whereez is the unit
vector in thez direction and

dBx~z!5dBcos@f~z!#,

dBy~z!5dBsin@f~z!#, ~6!

anddBz(z)50, one obtains for the~ensemble-averaged! co-
variance functions

Dxx~z2z8!5Dyy~z2z8!5
dB2

2
expS 2

uz2zcu
zc

D ~7!

and Dxy(z2z8)50 on the grid. The fields at points not o
the grid are determined via linear interpolation off. These
fields fulfill uBu5AB0

21dB2[const and¹•B50. Note that
the process defined by Eq.~6! is not Gaussian sincedBx and
dBy are bounded.

The fields investigated in this paper are constructed w
either this algorithm~caseA), or KBJ’s algorithm~caseC).
In order to investigate the importance of fluctuations of
field modulus, I also performed calculations with the alg
rithm of caseA, but drawingdBx anddBy from independent
realizations~caseB). This leaves the two-point correlatio
t

c-

a

to

-

h

e
-

functions unchanged, but nowuBu is no longer a constan
such that~as in caseC) mirroring effects should be expected
The angleC between the mean field componentB0 and the
z axis was allowed to vary in they-z plane.C50 corre-
sponds to the standard slab model. For the caseCÞ0, dBy
was set to zero such thatdB•B050 and fluctuations of the
total field modulus were only of second order indB.

III. RESULTS

A. Nondiffusive behavior

For a comparison with classical results, some simulati
were performed using KBJ’s method to generate the fields
the grid. The results were in agreement with those publis
by KBJ.

However, for the study of the diffusive process it is use
to deviate slightly from this reference by defining the pit
angle as the angle between the momentum and thelocal
magnetic fieldB(x) instead of the mean fieldB0 . The reason
is that we are mainly interested in the scattering throu
pitch angles of 90°: A~not too energetic! particle will move
only a small fraction of one correlation length of the rando
field and therefore have no chance to perform any kind
averaging overB. To lowest order, it performs a gyratio
around the local, not the mean, magnetic field. It is easy
see that this gyration in the local field corresponds to
oscillation of the pitch angle cosinem with an amplitude of
orderdB/B0 if one uses the standard definition. This beha
ior cannot be described by a diffusive process and, as
time-integrated distribution function cannot distingui
whether a particle is changing its pitch angle due to diffus
or this oscillation, it leads to undesired artificial contributio
to the pitch-angle diffusion coefficient in our numeric
method. Moreover, our local definition is closer to the fr
quently used concept of diffusion along a field line. Thou
the Fokker-Planck equation has originally been derived
QLT for the standard definition, I will therefore assume~and
test! its validity for the locally defined pitch-angle. Bot
definitions coincide fordB→0. Note, however, that the re
sults reported in this paper were changed only marginall
one used the standard definition and the local one was
sen only to eliminate the oscillatory component. A more d
tailed comparison shall be presented elsewhere. Figur
shows the time-integrated distribution functionF(m) for
casesA and C, wheredB/B050.1, Vzc/v51 and C50,
and caseA was calculated using both the local and the st
dard definition of the pitch angle. It can be seen that it
considerably more difficult for the particles to obtain neg
tive pitch angles in caseA, where mirroring effects are mini
mal, than in case C with fields generated by KBJ’s meth
Due to the oscillatory artifacts, the transition region arou
m50 is smeared out over an interval about
@2dB/B0 ,dB/B0# if one uses the standard definition of th
pitch angle.

As noted above, QLT is inconsistent in the vicinity ofm
50: On the one hand, it is assumed that the fields ‘‘seen’’
the particles are uncorrelated; on the other hand, the part
perform to lowest order a periodic and localized motion g
ing rise to highly correlated fields. Therefore, though it
well known that there may be stochastic and diffusive m
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tion in deterministic fields~e.g., see,@12#!, one may ask
whether scattering throughm50 can be properly describe
as a diffusive process. The answer, of course, depends o
detailed formulation of the question, as it is clear that
short time behavior of the distribution is deterministic a
the Fokker-Planck equation cannot resolve the time ev
tion over intervals smaller than the relaxation time of t
particles. I present a case where the diffusion equation~1!
leads to an inconsistent interpretation of the time-integra
distribution function.

The simulations in a standard slab geometry of the fie
showed some evidence for a slight asymmetry ofDmm
aroundm50 that might indicate nondiffusive behavior i
this region. This becomes very prominent if the mean field
not parallel, but inclined with an angleC with respect to the
z axis ~i.e., in an oblique slab model; in order to minimiz
mirroring I chose a random field with only one nonvanishi
field component fulfillingdB'B0): Fig. 2 showsF(m) for

FIG. 1. Time-integrated distribution functionF(m) for caseA
~nonmirroring! and caseC ~mirroring!, using the standard definition
of the pitch angle. Also shown~full line! is caseA with a locally
defined pitch angle, free from the artificial contributions of oscil
tions in the local field close tom50 and, therefore, showing
sharper transition in this region.

FIG. 2. Time-integrated distribution functionF(m) from Monte
Carlo simulations for propagation in fields decribed by an obliq
slab model with angleC50.6,Vzc /v54, anddB/B050.1. F av-
eraged over an ensemble ofR58000 realizations withN510 par-
ticles.
the
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an ensemble withdB/B050.1, V0zc /v54, and C50.6,
whereV05eB0 /mc is the gyrofrequency in the mean field
According to Eq.~4!, F(m) should be a monotonically in
creasing function form,mS . However, it is decreasing in a
region close tom50, which would indicate a negative dif
fusion coefficientDmm if the process were really diffusive
As this is clearly unphysical, the description by the Fokk
Planck equation seems to be an inadequate approximatio
this region. The shape ofF(m) at m'0 remained almost
unchanged when the initial valuemS was moved frommS
50.7 to mS50.4. Therefore, it is not likely that the reaso
for the inversion is an incomplete relaxation of the initi
distribution.

For larger values ofumu, however, the QLT prediction
was in reasonably good agreement with the outcome of
Monte Carlo simulations~Fig. 3!. For the rest of the paper
will focus on the standard slab model withC50.

B. Mirroring and diffusion

According to QLT and its nonlinear modifications,Dmm is
a functional of the covariance functionsDmn(x), where
m,nP$x,y,z%. I now compare the propagation in fields co
structed according to Eq.~6! ~caseA) with fields that do not
conserveuBu, but have the same covariance structure. Th
can be generated with the same method, but takingdBx and
dBy from two independent realizations~caseB).

For the slab-model discussed here, wheredB varies only
in the direction of the mean field~i.e., f50), the functional
dependence ofDmm can be reduced to a dependence on
covariance function of the two circular polarization comp
nents DRR(z) and DLL(z), where dBL,R :5(dBx

6 idBy)/A2. For casesA and B as well as the fields simu
lated by KBJ, however, these are equal:DRR(z)5DLL(z)
5dB2exp(2uzu/zc)/2. Therefore a simulation in fields accord
ing to KBJ is also included in the comparison~caseC).

Figure 4 shows exemplarily the results of simulatio
with dB/B050.1 andV0zc /v51. Close tom50 the results
of casesB and C are not equal, but of the same order
magnitude. CaseA, however, whereuBu is a constant and

e

FIG. 3. Dependence ofDmm in the numerical experiments onm
for propagation in the fields described in Fig. 2. MC, results
Monte Carlo simulations; QLT, prediction of the quasilinear theo
The region whereF8(m),0, i.e., whereDmm would be negative, is
excluded.
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scattering by magnetic mirroring should be minimal, yield
pitch-angle diffusion coefficient that is considerably~about
two orders of magnitudes! smaller thanDmm in caseC.

Results of simulations with different parameter s
showed that this effect is less pronounced for particles w
higher rigidity ~i.e., if V0zc /v,1) and more pronounced fo
particles with lower rigidity. This should be expected sin
only for sufficiently low velocities the fluctuations ‘‘seen
by the particles can be regarded as slowly varying such
the magnetic moment is an adiabatic invariant and mirror
can occur.

FIG. 4. Dependence ofDmm on m for propagation in fields with
exponentially decaying correlation function, slab model w
Vzc /v51, anddB/B050.1. CaseA, fields with constantuBu ac-
cording to Eq.~6!; caseB, fields with nonconstantuBu with x andy
components drawn from different realizations. KBJ, fields gen
ated by the process described by KBJ; QLT, prediction of the q
silinear theory.
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IV. CONCLUSIONS

I have shown that knowledge of the covariance functio
or two-point correlation functions or, equivalently, of th
power spectra of the random magnetic fields is, unlike
sumed in most studies based on quasilinear theory and
nonlinear extensions, not sufficient to predict the transp
properties of cosmic rays. This was demonstrated by sim
lating the propagation in random fields with identical cov
riance functions but differing in the variability of the tota
field modulus. As the latter quantity determines the relat
importance of mirroring, the resulting pitch angle diffusio
coefficient at pitch-angles about 90° could vary by orders
magnitude without changing the correlation functions.

Though there is evidence for nondiffusive behavior
some cases, a reinterpretation of the distribution function
terms of modified theories based on, e.g., a more gen
master equation instead of the Fokker-Planck equation wo
not help as long as they use only information about the
variance functionsD lm . This is demonstrated in Fig. 1
showing the time-integrated distribution functionsF(m) for
propagation in mirroring and nonmirroring fields: Obviousl
the total number of particles withm,0 is considerably re-
duced in the latter case where scattering throughm50 is
clearly hampered. If the dynamics would be specified co
pletely by the covariance functions, both distributions wou
be identical or, if one takes a finite relaxation time into a
count, very similar.
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